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SHOCK STRUCTURE Il A PARTIALLY IONIZED GAS
Michel Y. Jaffrin

Department of Mechanical Engineering
Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

The one-dimensional, steady state structure of a shock
wave in a partially ionized gas is investigated using the
Navier-Stokes equations for the atom, electron, and ion fluids.
The plasma is assumed quasi-neutral without a change in ioniza-
tion across the shock. A characteristic feature comrmon to
weakly and strongly ionized gases is the existence of a broad
layer of elevated electron temperature (thermal layer) ahead
of the shock front due to the high electron thermal conductivity
end of a precursor and an imbedded axial electric field induced
by the charge separation., Because of the large atom-ion
collision cross section due to the charge exchange mechanism,
the ion slip is small when less than 30% of the plasma is ionized.
In a weakly ionized plasma, the atom flow is unaffected by the
ionized particles and the structure consists of an ordinary atom
shock imbedded in the thermal layer. When the plasma is sub=-
stantially ionized, the heavy particles are partially compressed
and heated in the thermal layer and the ion and atom temperatures
overshoot their downstream values in the shock. The induced

electric fields increase with the degree of ionization and the




-2-

free stream lMach number wnile the shock thickness decreases,
Ar. experimental measurement in partially ionized hydrogen of
the variation of potential in a strong shock gives a shock
thickness and a potential rise across the imbedded shock in
good agreement with the calculated vaiues,

I, INTRODUCTIOR

While the study of a fully ionized plasma is relevant to
astrophysical problems, it is more realistic to comsider a
partially ionized plasme in problems of re-entry physics and
related laboratory experiments. The purpose of this work is to
extend our solution for the shock structure in a fully iornized
3&31 to the case of a partially ionized gas, and to investigate
the various plasms regimes leading to different types of s@ock
structures. The shock structure in an ionized gas is complex
end consists in general of a thin region in which most of the
deceleration and heating of the flow occurs, imbedded within a
much broader relaxation region. In our analysis, the term shock
refers to the thin region while the broad relaxation region is
termed a thermel layer,

Of particular interest in the present work is the study of

v e T

the effects of the ion-atom diffusion or ion slip which is measured’

Y

by the velocity and temperature differences between ions and atomn.%

The negative electric field induced by the charge separation ine-

side the shock slows down the ions and creates an initial ion

‘
7
¥

3
k]

3

l. M. Y. Jaffrin and R. F. Probstein, Phys. Fluids 7, Oct. (196k), -




slip, which vanishes at the end of the shock after a sufficient
number of ion-atom collisions.,

As in our previous work, we seek the solution for a steady
one-dimensional shock with no applied external electric or
magnetic fields. The plasma is assumed here to be a ternary
mixture of roms, singly ionized ions, and electrons. The
analysis is based on a three~fluid continuum approach using the
Navier-Stokes equations as a model.

In order to make the problem mathematically tractable, we
introduce three basic assumptions:

a. Frozen ionization: The increase in temperature
across the shock produces further ionization of the gas following
the shock, however, it is assumed that the characteristic chemical
lengths are large compared to the shock thickness so that no
ionization or recombination reactions take place in the shock
itself,

b. Quasi-charge neutrality: It is assumed that the
over all charge separation is negligible, a condition satisfied
when the Debye length is much smaller than the mean free path,
which is met for most plasmas,

c. Small ion slip: This follows from the fact that
because of the large ion-atom cross section due to the charge

exchange mechanism, the ion-atom mean free path £ is in general

ia2

small compared to the shock thickness As' As a result the ion

slip, which is of the order of lia /As’ is small and may be
2
compuated by an iterative method.




.

The shock structure in a fully ionized gas has been in-
vestigated by several tmthorsl“h but the case of a partislly
ionized gas has received less attention. Grewal and Talbots,
assuming a Mott-Smith solution for the ions and atoms, and
neglecting the ion slip found the existence of a broad thermal
layer in front of the shock where the electron temperature
rises., But they did not investigate the structure of the ion-
atom shock and the assumption of small electron energy restricts
their solution to the weakly ionized case, Pikel'ner6 cone
sidered the inviscid transition region between a magnetohydro-
dynamic shock and the downstream state but he did not take into
account the charge exchange mechanism which, by considersably
increasing the atom-ion cross section, strongly inhibits “he

ion slip in the relaxation region,

II., BASIC EQUATIONS

There are for each type of particle, atom, ion, and electron
the three continuum equations of mass, momentum, and energy. The
electric field whose only non-zero component is E; is governed

by Poisson's equation

2. J. D. Jukes, J, Fluid Mech, 3, 275 (1957)

3. V. D, Shafranov, Zh, Eksperim, i Teor. Fiz. 32, 1453 (1957)
[Eng. Transl: Soviet Phys. JETP 3, 1183 (1957)]

4, 0. W. Creenberg, H. K. Sen, and Y. M. Treve, Phys. Fluids 3,
379 (1960)

S. M, S. Grewal and L. Talbot, J. Fluid Mech, 16, 573 (1963)

6. S. B. Pikel'ner, Zh, Eksperim. i Teor. Fiz. 36, 1536 (1959)
[Eng. Trensl.: Soviet Phys. JETP 7, 9 (195977
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roula l“'e(ni - né) . (2.1)

Here e is the magnitude of the electronic charge, x' the axial
distance, and n' the number density; the subscripts i, eland
e, denote ions, electrons and atoms respectively and the
“"primes" are used to distinguish the physical variables from
the dimensionless variables which will be used later,

The net current Jx vanishes so that we have

J

=0=(n'u!' =n'u')e
i ee

X i

or

where u' is the velocity. On integrating the steady one dimensional
mass conservation equations for the ions and electrons, when there
is no ionization or recombination, the constants of integration

Ci and Ce are the same, giving:

= néué =C, =¢C . (2.2)

nlu' = C . (2.3)
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The comstants of integration Ci and Ca are related to each other
through the degree cf ionization a., In the undisturbed plasma,
all three species have the seme meen velocity and the degree of

ionization o can be expressed by the relstion:

ni Ci
nl+n C, +C * (2.4)
i .1 i .1

=

The conservation of momentum for the three species yields
the following equations:

du! dp! du!
d " 1, w1 =
573 a;e' ax' =~ axt (llj “'J.') - njejbx = RZJ ij ’

(2.5)

vhere m is the particle mass, y" che longitudinal coefficient

of viscosity, p' the pressure and ij represents the longitudinal
momentum transfer between species J and k and where J =i, e, 2
with the convention e, =de, e, = -e, e = 0. The summation

is made for k# j. The longitudinal coefficient of viscosity u®
is related to the classical coefficient of viscosity u by the

relation
p" =L4/3 v ,

The corresponding energy equations are

2
dT? du’ m du'
5 a LETR d d " . 1ot
saor (Pyuy) - ey 'd—xdb - o (ujyy &'x"?') * '2'1 nyuy —d%’—
-njuj eJE; = X (CJk + uBPJk) , (2.6)

k#J

e




vhere x is the thermal conductivity, T*the absolute temperature

and g ¥ denotes the kinetic energy transfer from the k-

J

particles to the j-perticles. The basic system is completed

by the equations of state for the three species

Py = ns kTs . (2.7)

With the dissipative coefficients and transfer terms assumed
to be known functions of the dependent variables, then Egs.
(2.1) to (2.7) constitute a system of thirteen equations for
the thirteen unknowns u3, n!, T3, p3 and E;. However, since the
continuity and state equations are algebraic, and six in number,
the problem is reducible to the solution of seven simultaneous
differential equations for the appropriste seven unknowns.

We may simplify the system of equations first by noting

that from ewton'’s third law of motion,
P, +P . =0 , (2.8)

. t =
EJR +u JPJk + ij + “kpkj 0 . (2.9)
Secondly, ve note that the clectron inertia and viscous terms are

much smaller than the corresponding ion and atom terms and may

therefore be neglected,
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After employing the above conditions and approxixzations the
basic set of shock structure equations will consist of the two
algebreic continuity equations (2.2) and (2.3), Poisson's

equation (2.1), and the following six differential eguations:

a. The electron momentun equatica (2.5), j = e

d t e ¢ 1t = P
3;7»(ne k-e) +nle Ex Pt Pea . (2.1¢)

b. The ion-electron momentum equation, obtained by

adding the ion and electron momentum equations

dug 4 a dug
' ' ' " o n 1
2,0 o * o (mf KT + ng kTY) - 5o (uf 557

- ' _n? ! =
(ai ne) eEl =P, _+P, . (2.11)

¢c. The plasma momentum equation, obtained by adding

the momentum equations for the three species. On using Egs.

(2.1) and (2.8), the resulting eyuation can be integrated once
to give

L} ] | 4 t Tyt 1 ] |
mi(Caua + Ciui) + nakTa + niki1 + nekTe

du; dui E;z
" ”




Here the atom mass is assumed to be equal to tne ion mass and
the constant of integration P is determined by the boundery
conditions.

d. The electron internal energy equation, vhich is
obtained by multiplying the electron momentur equation by ué
end subtracting the result from the electron energy equation.

It may be written

3 dTé kTé dué a dT;
SCGEHT G ué dx' = ax' (Ke dx') “leat bei -

e. The ion internal energy equation, obtained by the

same process as Eq. (2.13), which may be written

daT! ET! du! du! aT!
2 it @ viw axt M NEde ax’ i &'
=g, + &, . (2.1b)

f. The plasma energy equation, obtained by adding
Eqs. (2.6) for the three species with the aid of Eq. (2.9) and

integrating the resulting equation to give

Ca 2 % 2 s ary
- _ 2 1 ' ' - —
m 5= u” +omg s wt + SR[C T+ C Ty + T - x| 7m
dTi dTé du' dui
- - cm—— ] " — [] 1" ——— T
i I "~ Se I’ g a dx' HiMy ' H » (2.15)
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wkere the constant of integreticn H is evaluated at the boundary
conditions.

ITI, DISSIPATIOR XD TPANSFER COEFFiCIZNTS

We nov evaiuate the dissipation and transfer coefficients
vhich are present in the shock structure equations (2.1) - (2.15).
The classical coefficients of viscosity and thermal conduction

for a pure monatomic gas are given respectively by the relations7

u o= %%n mC(-) . (3.1)
K = 1nk u 7—% xkn'(%) R (3.2)

vhere ¢ = (8 kT'/wm)l/2 is the mean thermal speed, v the col-

lision frequency and k the Boltzmann constant. The collision
frequency for a pure gas is equal to:
= 'n?
v &n Qaac ’ (303)
where Q;a is the effective hard sphere cross section for atom-
atom collisions,

The relations (3.1) and (3.2) can be extended to the conm-

ponent L of a gas mixture as follov58:

7. S. Chapman and T. G. Cowling The Mathematical Theory of Non-
Uniform Gases, (Cambridge University Press, New York, 1952)
pp. 100-10%4,

8. J. A. Fay, "Hypersonic Heat Transfer in the Air Laminar Boundary
Layer," Avco Everett Research Lab, AMP 71, March 1962,

[Tl r
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ST e o (L
v, TSNS (\-,:) s (3 .La)
K, = %—;—f— W s (3.kb)

where v, is the total collision frequency for momentum exchange

given by

_ , 2 2.1/2 “Tax
v, = é n}'(ng(cl + ck) —I-i— . (3.5)

Here, k is summed over all components of the mixture,

_ ) 2 . 2.1/2
= mlmk/(ml + mk) is the reduced mass, (ci + ck)

n is the

£k
mean relative thermal velocity and anlk/mz is the fraction of
romentun transferred per collision between 2 particles of
arbitrary mass., The quantity Q;.k is the collision cross section
for particles ¢ and k., For a pure gas, Ve reduces to v defined
by Eq. (3.3).

On developing the relation (3.5), the atom, ion, and electron

collision frequencies may be written respectively as

kT ‘ T' + T' 8kT! 2m
vy = 110,16 =212 4+ nror [ok(2—2) /2 4 nror (=217 =
™y it et e Ty
(3.6)
T' + T' }(T' kT' 2m
oy = 00l (82212 4 nrgr (26 =112 4 nrqr (8 =212 2
"y ™y e i

(3.7)




kT* kT* KT®
= ont —el/2 ' e/ ., e1/2
Ve = 0,8 AR (B )T+ nq 6 T
e e €
(3.8)

The last terms of Egs. (3.6) and (3.7) represent the effect of

the electron-heavy particle collisions and are of the oi.er of

52 where

m
e1/2 _ 1
€ = (mi) = 372 for Argon.

These terms are very small and will be neglected in comparison
to one. It is now necessary to eveluate the various cross
sections remaining in the above relations,

The cross sections for collisions between electrically
charged particles are deduced from the value of the viscosity
coefficient for an ionized gas given by Chapman and Covlingg.

Using the Spitzerlo result that the Debye length is the proper

cutoff impact parameter, one finds

)5/2

v=3 ()72 (kT! , (3.9)

e loge A

vhere A is a dimensionless cutoff impact parameter equal to
3(k3T'3/wn')l/2/2e3. Comparing Eqs. (3.1) and (3.9) we obtain
the following values for the Coulomb cross section:
neh loge A
! = mmeetrenrt———— =
QJJ > , J=1i,e . (3.10)

2(kT3)

9. See Ref, T, p. 179.

10, L. Spitzer Jr., Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956) p. 72.
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Since T;/me >> Ti/mi the electron temperature is the relevant
temperature in the calculation of ion-electror collision cross

section and

Q; = Q;e . {3.11)

The values of the other required cross sections Q;a’ Q;a’
and Q;a derend on the gas considered. They will here be
evaluated from experimental results for Argon. The atom~-atom
collision cross section Q;a is obtained from the values of the
visccsity coefficient M, given by Amdur and Masonll. At high

T g 3/
a

temperatures wox 31.107 g/cm sec, which corresponds to

1/k cm2 .

-16

r - t

Qaa 170.10 /’Ia

Experimental data compiled by Fay8 show that the atom-ion cross

section Q;a is much bigger than the atom-atom cross section be-
cause of the charge exchange mechanism, This cross section
decreases very slowly with the temperature and will be taken

constant and given by
16 2

! = L] =
Qia 1ko - 10 cm .

11, I. Amdur and E. A. Mason, Phys. Fluids 1, 370, (1958).
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The atom-electron cross section Q;a 12,13

0.25 - lO'16 @’ at T = 4600°K because of the strong Remsauer

has a2 lov minimum of

effect. It increases rapidly for higher temperatures up to 106 %k
and decreases again, For a range of temperature up to 2 - 10s %
ve shall use the following approximate relations obteained from Ref, 12 by

curve Titting

L 16 2 Y o

Q' = (-0.35 + 0.775 10~ 'r;) x 100 om Té > 10 K

ea

b 2

Q, = (0.39 - 0.551 107" T + 0.595 1078 'rf).m"m em” TP <10
In any cese the momentum and energy exchange between electrons and
atoms is so slow that the structure of the shock itself depends
only very weakly on the cross section Qéa’

For generality the analiysis will be carried out with the cross
sections expressed as known functions of the temperature which are
not explicitly specified. The results obtained will be qualitatively
valid for other values of the cross sections provided that the
esgential feature Qia >> Q;a is retaineg,

The viscosity and thermal conduction coefficients for the atom

gas may then be written in the form

1/2
(m, kT!)
i a
Vg = '1'3'6?" nr Q. T+ , (3.12a)
aa [+ i Y4a ( a 1)1/2]
nl Q' Tl
a “aa a

12. I. P. Shkarofsky, M. P. Bachynski and T. W. Johnston, Planetary
and Space Science 6, 2k, 1961

13. S. C. Brown, basic Data of Plasma Physics (The Technology Press of
the Massachusetts Institute of Technology, and J. Wiley and Sons
Tnc., N, Y., 1959) p. 19.
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(7 S WYE
Qaa i1
o T Ao : (3.12b)

: a i1/2
a aa a
We note that the viscosity and thermal conduction cecefficients

of the atom gas are reduced by the presence of the ions.

For the ion gas these coefficients are given by

S5n'!
ST (mik)l/z T
B T T e 2. n' qQ 277 s (3.13a)
[] X} J ) [
2 na Qia Ta + Ti
Bry k1/2 .
; (=)""" x7}
Q! n m i
€ = ———t— ,  (3.13v)
ol $)1/2 [ ny Qy (i 172
2 n' Q' ‘T + T
a ‘ia a i
while for the electron gas
nkT!
75(1—2)1/2 k
Ky = £ (3.14)
/201 Q)
6hQée(l + /2) (1 +

(14 /2) g q
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The viscosity and thermal conduction coefficients of the ionized
particles are here reduced by the presence of atoms. The electron
viscosity coefficient is smaller than g by a factor of the crder
of ¢ = (25)1/2 and the electron viscosity term may be neglected

in the structure equatlions, as it was noted earlier,

From Eqs. (2.12) and (2.15), we note that for given values of
the Mach number, velocities and temperatures, the velocity and
temperature gradients are inversely proportional to the viscosity
and the thermal conduction coefficients, Since, from Egq. (2.10)
the electric field is proportional to a temperature and velocity
gradient, the whole shock structure depends critically on the
behavior of the dissipation coefficients. As the viscosity and
thermal conduction of the stoms coefficients are progressively re-
placed by those of the ions as the main dissipative mechanisms,
the plasma regime changes from weakly ionized to fully ionized and
the shock structure varies accordingly. The different plesma regimes
for Argon are illustrated in the a, T' diagram of Fig. 1. When
niQy, << n)q;, and n{Q}, << n!Q) , it mey be seen from Egs. (3.12)
and (3.13) that the ion and atom dissipative coefficients depend
mostly on the atoms. Moreover, if a << 1 the ion dissipation is
negligible compared vith the atom dissipation and the region delimited
by the three preceding inequalities represents the weakly ionized
regime, On the éther hand, when niQia >> n;Q;a and niQii >> n;Qia,

the atom collisional dissipation is much smaller than the ion

dissipation and the ion viscosity and thermal conduction approach




ed
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their fully ionized value: this ve term the quasi-fully ionized

-3

region. Finally, the intermediate range between a = 10 - and

a = 0,5 represents a mixed regime that we denote by partially
ionized,

The momentum exchanges between the different species of a
partially ionized gas have been computed by Zhdanovlh. On
neglecting thermal diffusion but extending Zhdanov's results to

a multi-temperature model, the momentum transfer per unit volume

from species k to species J is given by

ij = J ™y Jk(u' uk) . (3.15)
where

77k = 2g

5k =3 (3.16)

a— Q .
Y 3k

The quantity Z,, is of the same order as the collision time. In

3k

particular, the ion-atom momentum transfer is

m

1/2
=-—- — ' 1} '._!
Ps /'nn[ k(T! + T})] u = ug) . (3.17)
T' T'
Using the inequality ;S >> Ei the electron-atom momentum transfer is,
e i

kT
P = - /3 w( /2 g1 (u! - ) (3.18)

ae €a a

1k, Zhdenov V. M., PMM 26, 280, (1962). [Eng. Transl.: Applied
Mathematics and Mechanics 26 Lo1 {1962).])
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Since
1/2 1/2

> n
it foilows that
o >> P

The ion-electron momentum transfer is given by

8 B RT;
E oo o | * Pramme SR ey
P 3 2 nine(

» Mo u w0 (3.9)

n ei’ e i

The total ion-electron energy transfer has been computed by
Burgers ’. Expanding Burgers' result in povers of the smell

n

quantity ¢ = (;501/2 we find that the ion-electron energy
i

transfer may be vrittenl

[

+u'?P, =8 /2 nt '(me kT"")1/2 ;i'k(T' T!)
Coi * Uefey = - NiNa " mg 2% T %
l L] ] '
+ §(ue - ui) (miui + meue)] . (3.20)

Petschek and Byron16 have computed the atom-electron energy
transfer due to the random motion of the particles for arbitrary

interaction laws which is given by

15. J. M. Burgers, in Plasma Dynamics, edited by F, H., Clauser
(Addison-Wesley Publishing Co., Reading, Mass., 1960) p. 156.

16. H. Petschek and S. Byron, Annals of Physics 1, 270, (1957).




ai (T* - T') 3 -
AE = - ~=—= ————ee ' {c o{c ) r éc R
By T, ae} e e’ ‘e e

where 2; i3 the rendom electron velocity, c(ce) the cross
section and fe the Mexwell distribution function. The in-
tegral term in Eq. (3.21) represents the mean value of the
product cz o(ce). Recalling that Qéa is the cross section
averaged over a Maxwell distribution end approximating the
mean value of the product cg a(ce) by the product of the
averages of the tvo terms, we obtain

. me kTé
| oy ]
AE )V - 8 /2 n.n! ( - )

1 ]
1/2 ee
m

k(T; - Té)

(3.21)

(3.22)

The total energy transfer is the sum of the energy transfers

due to the random and directed motions of the particles and is

given by
m kT! Q!
£ +u'P _ =-8 /3 nn(-5—2)1/2 8 [y (70 _ )
ae a ae ae n s a e
(u; -u')
STEeREE———— ' '
+ 3 (miua + meue)] .

(3.23)

The ion-atom energy trensfer is derived in Appendix A and

the result is

- k ] ] 1/2
£ .+u'P =-2/2 n;ni["m (T8 + Ti)]

' () 1]
ai a ei R Qia[k(Ta Ti)

oy
4 = (u; - ui) (u; + ui)] .

3

(3.24)
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IV. DIMINSICONLESS EQUATIONS AND BOUNDARY CONDITIONS

At upstresm infinity (x'+ - =) and at downstream infinity
(x -+ + =) all gradients vanish and the system of eguations (2.1) -
{2.15) reduces to the Hugoniot conditions. We note that on each
side of the shock, the three species have the sarce velocity and
texperature, and the electric field vanishes.

Since the shock thickness depends generally on the downstrean
state, we choose to normalize the velocities and temperatures with
respect to their dowvnstream values after the sheck. 1In what followvs
ve denote the upstream state by subscript 1 and the downstrean

state by subscript 2, On this basis we set

N = M2 /e
u, = uJ/u2 » T TJ/Té . (L.1)
with j = i, e, and a. We note that the dimensionless velocities
are of order of one but the upstream dimensionless temperatures
are very small for strong shocks.

The appropriate dimensionless electric field is

eE! A

x D2
El—-ﬁ—- » (h.2)

kTé

kT3 172

vhere A\, = ( 5 ) is the downstream Debye length. The
2 kne n,
2

corresponding dimensionless potential ¢ is

‘= ,-‘:%5 : (1.3)
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vhere ¢' is the actual potential,

de also introduce the dimensionless charge separation defined

by the relation

n' = n'
1

5.-_'!1' e:
i2 i e

ﬁ'h‘
\
ElH

. (b.B)

The independent variable is made dimensionless with respect to

the shock thickness 4, by the reiation

- et
x_ = x /As . (k.5)
The cross sections Q;B are normalized with respect to their

downstream values by the relation

Qg = %g’ Q:zaz (k.6)

It is convenient at this .point to introduce the following
mean free paths which are related to the verious downstream cross-~
2 [ ] .
section QuBQ'

atom-atom mean free path

-1
] ={/2n" Q ) . (h.7a)
32 % %%
ion-ion mean free path
' ' -1

2 2 2
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atom-ion mean free path
e, =(Za o ), (4. 7c)
%2 2 %
ctom-electron mean free path

t, =(Zn @ 7t (4. 7d}

€8, &, ¢€a,

Sincen] =n' , Q' =Q'. =Q!. , the ion-electron and the
12 e,’ ee, e12 ii,

electron~electron meen free paths are both equal to the ion-

ion mean free path,

Finally, we define the downstream plasma Mach number M2 by

the relation

12 uéz m u'2

m u)
M o= e | n = (L,8)
2 ST?nig + na;YVsz ~ g.qu (1 + ) ’

3m,(n' +n' ) +mn!
i a2 12 e 12

where as previously the electron mass is neglected in comparison
to the ion mass,

If we emplov the non-dimensionalization of Eqs. (L4.1) - (4,8)
neglecting terms of order € and smaller, such as the electron
viscosity and inertia terms, then we may write in dimensionless form:

Poisson's equation (from Eq. (2.1))

dx_ A . (k.9)

o me e mw W L m raa s Wor———
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On the other hand, the electron momentum equation is given from

Eq., (2.5) with §J = e by

T A E Q Q.
d e s’ _ AL/2 Tae 1 1 ei
dx (u )+ oo T eeb [2 (u “u )+ 2. . J
s e D2 e ae2 a e 112

2
AD2 AD2
§ = O(A-‘— E) = 0(—'2‘-" .
S As

In most plasmas, the Debye length is much smaller than the mean
free path, and therefore much smaller than the shock thickness,

It follows that the dimensionless quantities E and é are very small
and can be neglected in comparison to one, Therefore, in all

structure equations, except Poisson's equation {4.9) we set

— — -~ ——— — v — e e ~p e et - _
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We note that the ion and electron fluids move together although
their temperatures may bte different.

With the approximations noted above our basic dimensionless
equations in addition to Poisson's equation may be written:

Electron momentum equation (from Eq. (2.5))

T AE A

d e s~ _ s /2
T @ T T e T T Qg - (h10)
i D es a i

-3 2

Ion-electron momentum equatir. (from Eq. (2.11))

du, T+ T Lia /2 4y

42 (1 + a) d ( i e) -c 2 d ( i i)

2 dx u, A dx F, dx
8 s 8 S 1l S

un\n

Q
A 1 ia 1/2 ea /2
== 2 As(u i) [lia T ) 2¢e zea Ti ] ‘
2 2
(4,11)
Plasma momentum equation (from Eq. (2.12))
- T T, 4+ T
2 g - — - - a i € .
3 Mg(l +a) [Ja 1+ l -a (ui 1))+ ua 1+ l] ~-a ( ui
L /2 L /2
T, Memta,
C A F dx l1-a 4 F, dx ©Y
s a 8 s i s

Electron internal energy equation (from Eq. (2.13))

——— - o it~ = e e e e e e




4T T du 253 12 4o s T2
3_e,_e i_s 2d(e ) = - be et -
2 dx u, dx €A dx F dx X u u. ea
s i s s s e s es, ai
5 5 beAsTi/"
[Te-Ta--9-}2(l+a)(u -u )7} - u2 Oee(ze-ll) .
i, i
{4,13)
Ion internal energy equation (from Eq. (2.1h))
4aT. T. du j2'111 T%/z du lia '1']."/2 a7,
.?Ll..,_%. 1‘c 2 1 (1)2_d 2d(1 1)
2 dx u, 4dx a F dx A dx F dx
s i s s i s s s i s
bAS (Ta + Ti)l/‘? 5 M2
=~ %z, Qia u u, [Ti =Tyt 9 I'.’(l +a) ua(ui - ua”
ia ai
2
beAs Ti/2
"t (Mo Te) e - (b.28)
ii u,
2 i
Plasma energy equation (from Eq. (2.15))
5 P o 2 5 a
6M§(I+G) [ua-l+1-a(ui-l)]+-2'[Ta‘l+l-u(’ri+'re-2)]
[0}
o, T2 ar gaa? u T2 gy ti /2 g
-4 2 a a o aa a ¢ a 2 e
A F dx A F dx (1 - a) €A F  dx
s a s s a s s e s
1/2
oty fLiaz drT, du,
2 (4.15)

sy o el Gl tou =) =00
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The dimensionless potential may be obtained from the relation

A
:-;%Ig'dx'=-J1i-des . (k.16)
2! X D,

The quantities, a, b, ¢, d, f, FA, Fi' and Fé appearing in

the dimensionless equations (L4.10) - (4.15) are defined as follows:

8 5(1 + a),1/2 _ 8
a=g(S5—"""N, , b= FLICRIS YR,
3 5

5 (3.01.(1“:1))1/2M 5 (_6n 1/

, a =

¢C*17 3 2 " B, ‘5T + o) ’
- . (4,17)
14+ /72
af
a8, Uy Ta + Ti 1/2
Fa = Q&a + (1 -« a) li Qia u, ( 2T { ’ (4.18)
8.2 b a8
li‘z u Tt T
= vt ()" q, (4.19)
i3 a i
2
2 2112 Qeaui
Fe = Q e + (l&.QO)
€ 1+ B L
88.2 a

When the quantities Fa’ F,, and Fe are replaced by the

i.
definitions given above, Eqs. (4.9) - (L4.15) represent a set of
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seven equations for the seven unknown variables Uy Uy Ta’ Ti’
Té, E and 6 as a function of the independent variable X e Had
we normalized the variables with respect to their upstream values
we would have received precisely the same set of equations with
the subscript 1 replacing the subscript 2 in the parameters.

Any state of the plasma will be represented by a point in
the seven dimensional phase space whose coordinates are the
dependent variables, The states 1 and 2 upstream and downstream
of the shock respectively, are singular points of the system of
Egs. (4.9) - (4.15). The dimensionless Hugoniot relations obtained
by setting the derivatives equal to zero specify the coordinates
of these singular points. In particular the coordinates of point

1l are

El =90
u =u, =T u = Mg i
=u, = = ,
T R
(545 - 1) (15 + 3)
T = Ti = Tl = ' (1‘021)
a4 1612
2
while the coordiunates of point 2 are
E2 =0 .
ua2 = ui2 =u, = 1
T =T, =T, =1 . (u,22)
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Here the Mach number behind the shock M2 is related to the free

stream Mach number Ml by the relation

2 4 3
M§= R . (4,23)
sni -1

It is importent to note that the Hugoniot conditions depend on
the plasma Mach number only. For the same velocity and tem-
perature conditions upstream, the plasma Mach number and therefore

the shock strength are reduced when the degree of ionization in-

creases,
A shock will exist whenever u, > 1, which requirss Ml > 1.
The atom and ion Mach numbers are greater than the plasma Mach

number by the factor (1 + 0)1/2’ and the atom and ion flows are

supersonic when Ml > 1, The electron Mach number is proportional
to € times the plasma Mach number, so that the electron flow is
subsonic unless M1 is very large.

The shock thicknesses 8, in which the various collisional
effects are important can now be estimated from the appropriate
terms in the dimensionless equations. For example, we note from

Eq. (4.13) that the electron thermsl conduction term is of the

ii2

13 /e). This implies that the electron thermal conduction
2

can broaden the shock to a thickness of the order of 211 /e. In
2

the weakly and partially ionized regimes where the dimensionless

order of £ /eAs; it is therefore of order one when As is

o(2

expressions F , F,, and F, are 0(1), the possible shock thicknesses

and their corresponding collisional mechanisms are:
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Mechanisms Shock thickness
Electron thermal conduction, li.ﬁ/s
electron-ion energy transfer, zii;/e
electron~-atom energy and momentum transfer, leag/e
atom thermal conduction and viscosity, 2aa2
ion thermal conduction and viscosity, lia2

atom-ion momentum and energy transter,
Obviously the shock structure will depend on the relative
magnitude of the various mean free paths, The values of the

ratios &£, /& & /.. and &, /L., are plotted in Fig. 2
ia,’ "aa,’ “ea, 1i2 ia, 112

as a function of the temperature for different values of the
degree of ionization for Argon, It may be noted that the ratio

zia /za is independent of a and is always small compared to one,
2
The ion-ion mean free path £ii is larger than the atom-atom mean
2
free path laa for low degrees of ionization but it is smaller than
2
©  for a =0.5and T'< 2.5 10° %K,
aa,
-ful i =
In the quasi-fully ionized regime Fa O(laaglziag),
F, = 0(%, /% ,. ) and the atom thermal conductivity and viscosity
i ia2 112
lead to a shock thickness 0(2ia ) while the ion thermal conduction
2
and viscosity correspond to a shock thickness 0(9.ii ). The shock
2
thicknesses corresponding to the other collisional mechanisms are not

modified. However we shall not consider this regime because of its

similarity with the fully ionized casel.

e —— N M —— . p—— - - =
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V. WEAKLY IONIZED PLASMA q << 1

We consider first the case of the weakly ionized plasme,
because of the simplifications introduced by the assumption
¢ << 1, The atom gas is indeed unaffected by the charged
particles provided that the degree of ionizaticn is very small.
We note that the terms representing the charged particles in Eqgs.

(4.12) and (4.15) are proportional to a and can be neglected when

a << 1, Moreover, when a is so small that af__ /2 << 1, for
aa, 152
example when a = 10’3, Eq. (4.18) yields
F A Q (5.1)

With the approxinations described above, Eqs. (4.12) and
(4,15) govern the atom velocity and temperature distributions
in the atom shock and are completely uncoupled from the other
variables,

Ve first examine the thermal layer of thickness 2112/c.
Should a discontinuous solution arise within this layer, we in-
troduce at the discontinuity a shock layer whose thickness is the
next smaller length until a continuous transition is found from

the upstream state to the downstream one,

. On
112

neglecting terms of order of a and ¢ in Eqs. (4.9) - (4,16), we

o= oex!
When 4 _ = liiq/e, X, is replaced by x ex'/e
[

obtain a simplified system of shock layer equations., From Eqs.

(k.,12) and (4,15)




T

%»Mg(ua - 1) + ;i-- 1=0 |, (5.2)
%'Mg(ui -~1) + %(Ta -1)=0 . (5.3)

Equations (5.2) and (5.3) are identical to the Hugoniot conditionms

and yield the following discontinuous solution:

]
[«

near point 1 u_ 1 2 T,=T (5.4)

near point 2 u = , T.=T,=1 ., (5.5)
This discontinuous solution indicates that there is a thinner

atom shock imbedded within the layer of thickness 211 /¢ and

2
this shock will be studied later. Outside the shock the atom

flow is uniform,

From Eqs. (4,11) and (L4.14) we find

=
L}

u, + o(czia /2ii ), (5.6)

2 2

T

8

T + 0(ee, /2,., ) . (5.7)
i 8 ia2 112

From Fig. 2 we recall that the ratio 2ia /lii iz very small and

2 2
cﬂia /lii is even much smaller. The ion slip is indeed negligidle,
2 2
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Equation (4.13) yields two different equations, cne on each

side of the discontinuity. HNear the point m(m = 1,2) we have

4
5 4T, . T ar b‘I'i/ 2 f1,
SHF-ToF ( F dx') -T2 (T, - Tm) [ch *3 Qea] '
e u e,
m
(5.8)
Equations (4.10), {4.9), and (%.16) determine respectively
the electric fiela, the charge separation and the poiential by
the relations
“', ar,_
E=« 1—;;— T . (5.9)
2
€A
D
§ =z L (5.10)
"11 dx
2
‘ = Te - Tl . (Soll)
We now split each of Egs. (5.8) into two first order dif-
ferentiul equations suitable for numerical integration. The
result is
dTe zF‘e
a-xw - ’rl’ﬁ ] (5012)
e
dz 3 dTe Tila

e —— s o A T ——— ot S
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where
ii

6= Qe * T % - (5.14)

The independent variable x* is next eliminated by dividing Egs.
(5.13) by Eg. (5.12). The resulting direction field equation
%%—-= iz, Te) is integrated numerically between points 1 and 2
toegive a relation z = z(Te). With z known, the electron tem-
perature distribution Te(x*) can be found by integrating Eq.
(5.12) where the origin of x* is taken at a point such that

T, =T, + 1073, The electric field, charge separation and
potential distributions are computed respectively from Egs. (5.9),
(5.10), and (5.11).

The upstream and downstream points 1 and 2 are obviously
singular points of the system of Eqs. (5.12) end (5.13) and the
direction field equation at these points is given by the ratio
of two vanishing gradients., It is therefore necessary to determine
the nature of the solution in the neighborhood of the singular
points by a suitable linearization. Since at the singular points
(m=1,2) T =T and z = 0, we assume that in the neighborhood of

e m

the singular points the solution is of the form

* L
T =T 4 AR, 2 = Be®®
e m

’ (5.15)

wvhere A and B are assumed to be small, On inserting these assumed

forms of the solutions in Eqs. (5.12) and (5.13) and retaining
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only those terms linear in A and B, one obtains & homogeneous
system for A and B. The condition for the existence of a non-
trivial solution is given by the characteristic equation. The
nature of the roots of the characteristic equation, here a
quadratic equation in k, determines the nature of the singular
points. The slope of the characteristic direction, dz/dTe,
at these points is simply B/A.

At the singular points m = 1,2 the characteristic equations

of the systen of Eqs. (5.12) and (5.13) are

/2
%% - 3 F k-bT:‘ GF =0 (5.16)
’ L ]
2 em Ti7§’ ui n em

vhere Fe and Gm denote the values of Fe and G at point m,
m
Equations (5.16) always have two roots of opposite sign. It
follows that points 1 and 2 are saddle points and the characteristic

directions are given by the relation

dz ka;/Q
E’r—. = F » ( 5017 )
e e
m

where kl is the positive root and k2 the negative one of the
respective characteristic equations, The integral curves obtained
by integrating the direction field equation from points 1 and 2

successively are sketched in Fig. 3.
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It has been pointed out that there is a discontinuity in
the transition from point 1 to point 2. This discontinuity is
represented in Fig., 3 by the line 3~l, where point 3 liess on the
integral curve leaving point 1 at x'+ - © and point 4 is on the
integrel curve reaching point 2 at x'+ + =, It will be seen
that this discontinuity corresponds to an atom shock of thickness

L << 2,, /e in which the ion velocity and temperature jump
aa, 112

from their upstream to their downstream values but where the
electron temperature can be considered as constant. In particular

we have

T = T . (5018)

Integrating Eq. (L4,13) with respect to x* between points U
and 3 with the assumption of constant electron temperature we

obtain the following equation

X3
i ro
f(z3 - zh) 1; loge u, + b I (Te - 1) Ti G dx* |,
3 xﬂ 3 3

(5.19)

The function G depends very weakly on the ion velocity and may
be regarded as constant, Since the shock thickness is thin,

x§ v xf and the integral on the right hand side of Eq. (5.19)
vanishes, The relation between the coordinate z of points 3

and 4 becomes

— e s = - —— - - e e e P — i S ————- T Ao o rn: -
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T
e

2
z3 - z), re loge u oo (5.20)

For each point of the integral curve 2-k we compute the
corresponding point 3 from Eq. (5.20) to get the locus of point
3. The intersection of this locus and of the integral curve
1-3 determines the actual point 3. The solution is unique,

The electron temperature, electric field and potential
distributions in the thermal layer are plotted in Fig. L and 5
for M, =3 T = 10" %), Mo=1C T = 103 %K, respectively
and a = 10-% n_ =10 en™3 in both cases. They are similar
to the corresponding distributions obtained in the fully ionized
casel. Due to the high electron thermal conductivity, the
electron temperature rises to reach a value close to its down-
stream value at the atom shock, Because of the low degree of
ionization the atom gas is essentially unaffected by the electrons
and remains in its upstream state ahead of the shock front., In
fact, the electrons are heated up by a very small decrease of
ion-atom kinetic energy which is here negligible but which is
appreciable for higher values of a. The ion flow is to a very
good approximation in equilibrium with the atom flow., At M1 = 3
the electron temperature rises slowly at first and then more and
more rapidly near the shock, At M1 = 10 on the contrary, the
electron temperature rises sharply at the very beginning and more
slowly afterwards., After the shock, the electron temperature

reaches its downstream value slowly through collisions with the

et ——tre = e -




atons and ions. The thickness of the thermal layer varies from
§ = 7 =
32112/5 at hl 1.5 to 0.75 1ii2/£ at Ml 10,

The electric field reflects the behavior of the electron
temperature distribution since it is proportional to its gradient.
It is always negative and for high Mach numbers exhibits a sharp
single oscillation at the veginning of the thermal layer es a
correlary to the sharp rise in Te. It is precisely the same
precursor electric shock layer which has been discussed in the
ful.y ionized casel. Its thickness 48 Mt . /¢ << L., /e. The

1 111 112
potential distribution is identical to the electron temperature
distribution except for the potential jump across the shock.

The atom shock structure equations are obtained now by

¢ - = 3 = !
sett:ng As iaaa' replacing x by x = x llaa2 and neglecting
terus of order a and €. Equations (L,13), (L,12), (4.15), (&.11),
(4,031, (b,10), (k.9), and (4.16) yield respectively the followv-

ing equations:

dTe zaae
x - o(‘-z, ) % 0, (5.21)
112

(hence T = constant = T )
e e

3

Tl/2 du T

2 a’: -5- m‘a--
c?}———.d—x- 3 Mg(ua- 1) * 1, (5.22)

ag a

Tl/2 1/2

aT T du

a e . J 2 bl - a _=8
e 'GMg(“a'l)*z(Ta‘l) “aq - TX

a8 aa

(5.23)

B ruwp— . s e o e




VW, XY = o
i e " a1 - 1/2
a.a2 Qia(la + Ti)
T. + T - ] ~1/2
{dul (2!{2- e3)+}_dli-c 182_d__(li .d_li)]
dx '3 2 2 U, dx ) dx ' F. dx ,
ui 1l 882 b3
(5.24)
hzia u.u
PR B O
Ty = Ty - §Moug(uy - u) T SRS V
2 ia i a
3 4Ty T duy giae Tilz duy d 1/2 T,
- ralira-ratad panl Cle sl v rat AERC Sl st ot DD
1 aa2 1
(5.25)
ADQ Te3 dui
E= T — . (5.26)
aa i
2
A
D
_ 2 dE
§ = [} a a—x. [ (5027)
ag,
Yy
= = Te3 log, (E;) o . (5.28)

Equations (5.22) and (5.23) are the Navier-Stokes equations for a

neutral gas whose solution for the velocity and temperature

distributions is well knownl7. Since £, /2 << 1 Egs. (5.24%)
a,’ “aa,

17. D. Gilbarg and D. Paolucci, J. Rat, Mech. and Anal. 2, 617,
(1953).
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and (5.25) show that to a good approximation, u, = u, and
Ti = T8 except at the beginning of strong shocks where the
dimensionless temperatures are very small, Equation (5.28)
shovs that the electrons in thermal equilibrium obey a
Boltzmann distribution

3

1 _ 4t '
exp [e(e ¢3)/kTe31 .

n =n

'
e

1
€ 3

The atom velocity and temperature d}stributions are obtained
by solving the system of Egs. (5.22) und (5.23) according to the
procedure used earlier to integrate the electron temperature
distribution. Points 3 and 4 are singular points of thisg system

and the characteristic equation at point 4 is:

2
2

dek + k[d(1 - 2 M) w2 ] + 2 (M

3 2 2 2 - l) = 0 . (5.29)

Since M, < 1, Eq. (5.29) has two roots of opposite sign. Point

4 is a saddle point, The characteristic direction of the integral

curve in the Ta - u plane is given by

8
G - , (5.30)

where k is the negative root of Eq. (5.29).
The characteristic equation at point 3 is deduced from Eq.

(5.29) by replacing M, by M, in the parameters. Since Ml > 1, it

2 1
is easy to verify that the characteristic equation at point 3 has

2 positive roots and point 3 is a node.

gy i
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Tnere is only one integral curve passing through the saddle
point 4 with the characteristic direction given by Eq. (5.30),
while the node 3 is a center of attraction for 2ll integral
curves passing in its neighborhood. Therefore, the numerical in-
tegration is performed from point U towards point 3 and the origin
of x is chosen at an arbitrary point near point L,

When the ion slip is small the ion velocity and temperature
distributions are assumed to be given by the following expansions

in the small parameter lia /La

2 88
o2t
2
(5.31)
ziaz
'1’ 2'1' +‘_-T + eee
i 3 i
aaz 1

The terms u ooy T
1 3
expansions (5.31) in Egqs. {5.24) and (5.25) and identifying the

... are computed by substituting the

terms of t.e same order in 11; /laa . The first order terms are

2 2
2 T + 7T
2u du a e aT
a 8 ,5 M2 3 1 8
il aQi (27 )llé dx 3 2 u2 u da
a a e
5 .
hu daT T du
..-S-Mzuu - 2 [-:i a*"&'—'&] (5.33)
il 9 i b, (27 )175' 2dx u_ dx

We note that the first order approximation for uy and Ti does not

contain the effect of ion viscosity and thermal conduction which

are very small,
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The electric field, potential, velocity, and temperature
distributions for atoms and ions are plotted in Figs. 6 and 7
for Ml = 3 and 10 respectively, The atom flow, unaffected by the
charged particles, undergoes a shock in which the dissipative
mechanisms are the atom viscosity and thermal conduction., Be-
cause of the large atom-ion cr;;;>section, the ion flow follows
closely the atom flow and goes through the same shock., The
negative electriz field induced by the charge separation slows
down the ions so that the ion velocity, which is at first slightly
larger than the atom velocity, then decreases more rapidly. The
ion temperature increases faster than the atom temperature and
the atom-ion equilibrium is reached at the end of the shock after
a sufficient number of atom-ion collisions.

At M1 = 3 the ion slip is small throughout the shock. At
Ml = 10, the ion slip is still small except at the beginning of the
shock where the method of solution based on the expansions (5.31)
fails, as may be seen on Fig. 7. HNo acceptable numerical solution
for uy and Ti in the neighborhood of point 3 has been found yet.

Analytically, the solution fails because Ti/2

is very small near
point 3 and the first order terms given by Egs. (5.32) and (5.33)
are large., A physical explanation might be that the local collision

time proportional to 7~1/2

is much larger at the beginning of the
shock than at the end because of the high temperature ratio across

the shock., As a result there are not enough ion-atom collisions at
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the beginning of the shock to keep the ion slip small, A smaller

value of the ratio Lia /!.an wvould improve the range of validity

2 2
of our 3solution.

The electric field, always nega.ive, shows a single
symmetrical oscillation. The ratio R of the Coulomb force acting

on the ions to the ion pressure gradient, defined by the relation

nie ‘E;'
dpi ’
ax

R =

increases through the shock from 0,k to 0.8 for M1 = 10. There~

fore, there is an important coupling of the electrical effects

with the ion flow,

The magnitudes of the shock thickneszsses and of the electrical
effects are given in Table 1 for typical plasma conditions at
different Mack numbers, The thickness of the thermal layer ahead

of the shock front is denoted by 4 The shock thickness based

l.

on the maximum atom velocity gradient is denoted by A, and is given

2
by

y ul -l
2 dua *
(3 max

As the Mach number increaseg the dimensionless electric field and
the potential increase while the shock thickness increases, For
different temperature and density conditions the elactric field E;

would vary as n;Tiyh and the potential rise as T!,

W

ShY 4

AT L R

o -
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VI, PARTIALLY IONIZED PLASMA

We now consider in detail the case in which the degree of
ionization a is no longer smell. In this case the ionized
particles have an important effect on the atom flow and the
magnitude of this effect increases with the degree of ionization,
We wish to investigate how the shock structure and the self-
induced electric field vary with the upstream conditions and the
degree of ionization, We shall compare the results obtained with
the limiting case of a fully ionized plasma,

The shiock structure is now investigated according to the
method employed previously. We consider lirst the thermal layer

of thickness 8, = /e where x  1is replaced by x* = szii .

L
112 5
Equations (5.6) and (5.7) still hold and we may set u; = u

Ti = Ta in the remaining shock equations. On neglecting those

a.

terms of order e but retaining those of order a in Eqs. (4.12),
(k.15), (4.13), (4.10), (4.9), and (k.16) respectively we obtain

the following shock structure equations:

T T
%}é(l+u) (ua-1)+3-8-‘--1+a(-l-1-5-1)=0.(6.1)
a a

/2 .
2ufTi d'Ie . fg

2 "
S ot LR SRR

(6.2)
; e/a ar, AT, T, du, b'I'i/2
t @l s o Tx';dx'* 7 (Tg = T) G,




bha
vhere G is defined by (5.14),

Ex-—2u S (D), (6.%)

1) Br—-d-.—x-.- ’ (6.5)

o
1}
|}
"
|
O —
tx3
®
[}

Te
J uad(;—) . (6.6)
i a

Equation {6.1) may be solved for T  and the resulting relation

used to eliminate T in Eq. (6.2) to give

'1'1/2 dT_ 10»12(1 + o)
f as- - Sl T (ua - l)(ul - ua) ’ (6.7)

X 3a
vhere u, = (3 + Mg)/th .
1 2
Differentiating both sides of Egqs. (6.7) with respect to x*,
substracting the resulting equation from Eq. (6.3) and solving

dua
for o we obtain

5(1 +a) 8 5 2 Te -
(T, = TG (- 30, « 31+ 1) = )

a

(6.8)

Once T  is eliminated in Eq. (6.8) with the aid of Eq. (6.1),

Eqs. (6.7) and (6.8) form a set of two first order differential
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equations in Te and u,. The method of solution is the same as
that described earlier for the weakly ionized case. The variable
x* is eliminated by dividing Eq. (6.8) by Eq. (6.7) and the
direction field equation du_/dT_ = f(Te . ua) is integrated
between points 1 and 2 to give a relation u, = ua(Te)' The
electron temperature distribution Te(x*) is obtained by integrating
Eq. (6.7) and the ion temperature distribution, electric field,
charge separation, potentiel are given in turn by Egqs. (6.1),
(6.4), (6.5) and (6.6) respectively.

Points 1 and 2 are again singular points of Egqs. (6.7) and

(6.8) and the characteristic equation at the points m = 1,2 is

2 2afbG
Tk 2a 3 “2 m > PF
..F..e_.(51+a-1+M§)+k[§(l-m)*—s-i—(§m-l)]
m

m

+D cm(z. - an) (1+a)=0 . (6.9)
The characteristic directions are

du
a _ 2afk
- (6.10)

- 2]
\
e 5(1 + a;Fem(l - Mm)

The product of the roots of Eq. (6.9) is of the sign of the

a

2
rres IR R Mm). At point 1,

2 2
expression (1 - Mm) (5 T

2a

(o]
M;>l>l-51*0

and the product of the roots is negative,

Eq. (6.9) has 2 roots of opposite sign and point 1 is a saddle
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point. At point 2 two different situations arise: if

2a
Mg >1 - H ORI Eq. (6.9) has two negative roots and point
2 is a node, The minirum value of M2 is reached at a = 1
(fully ionized plasma) and corresponds to a maximum free strean
Mach number of 1.12. This situation, therefore, corresponds
to wveak shocks. If o< - 2a Eq. (6.9) has two
> <l-strear B (6

roots of opposite sign and point 2 is a saddle point.

As in the fully ionized casel but in contrast to the
weakly ionized case, fcr a # O there are two different types

of shock structure depending upon the Mach number, The

particular “weak shock" solution cannot exist in the weakly

ionized case becsuse the condition 1 - grig%—zy < Mg < 1 cannot

be satisfied when a ~ 0.

2 2a
In the weak shock case, when M2 >1 “ T+ e ! the

numerical integration is carried out from point 1 to point 2.

The solution in the Uos Te phase space is continuous and has no
extrema, The shock structure consists of a single relaxation
layer., The results for M1 = 1,07k at a = 0,7 are plotted in

Fig. 8. The shock thickness is so large (2112/5) that the atoms,
ions, and electrons make many collisions and are in mechanical

and thermal equilibrium through the shock.

2a
When Mg <1 - ST+ ay* the integral curve pattern in the

u o, Te phase space is sketched in Fig. 9. The integral curve 1-3
leaving point 1 with the appropriate characteristic direction

(corresponding to & positive root of Eq. (6.9)) has a maximum at
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point 5 where it intersects the isocline of zero slope, a parabola

vhose equation is

T, = 2= (1 +a) ua(--g-ré'gua +-§-M§ + 1)
and does not reach point 2 with the proper characteristic direction
(corresponding to a negative root of Eq. (6.9)). Similarly, the
integral curve 2-k leaving point 2 with the appropriate direction
does not reach point 1. There is no continuous integral curve
Joining points 1 and 2 and we must adopt the discontinuous solution
1-3-k-2, The discontinuity between poirts 3 and 4 represents a
shock layer much thinner than the thermal layer which is investigated
below,

Ve know that the shock thickness is of the order of zaa for

2

a weakly ionized plasma and of the crder of 2 for a fully ionized

112
plasma, We may expect that, for intermediate values of the degree
of ionization, the shock thickness is a function of the three mean

free paths zaa s L.. 4 2. . Considering the case in which a is

o' i1, Tia,
small (< 0.3) we again set A_ =2 . Eq. (4.15) gives:
s aa,
d'l‘e laa
112

Hence, the electron temperature Te may te considered as constant

inside the shock and we set

T =7 . (6.12)
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On using Eq. (6.12), Eqs. (%.11) and (k4.1h) yield

2 "1a2 ugd, dug o 2 T+ T
b S 75 i (52 4 e) - —
at Q (T +7T.) u
aaz ia'"a i i
T "1&? /2 4
LJL 1 .24 4 1) (6.13)
uy dx [] dx ' F, dx ’ y
aa i
2
kg, u,u
5 . 132 ia
Ti = Ta = §'M§(l *+a) ua(ui = Uy = 1/2
bt Q (T +T)
aa2 {a' 1 a
2 /2
[é.dTi . Ei dui A ia (e N (dui)2
2 dx u, dx L F dx
3 aa i
2
. e
+ d-d-x-(—f.-—-d-y—)] . (6.14)

The ion slip is of the order of £, /v, therefore smell, It
B2 %%
follovws that, for a small, we may, to a good approximation repleace

by u, and T, by Ta in Eq. (4.12) which becomes

bt {
a l
.~ du ia T
1/2 "a ;1 - a 2 5 _a
CTa dx ( F *F1 ) *3 Mg(l * a)(ua - 1)+ u
a i aa2 a
T
e
-  — - 1
1+ aiz 1) . (6.15)

a

It is convenient at this point to replace Eq. (4.13) by the

equation obtained by adding the atom and ion energy equations
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(2.6) which, in dimensionless form, is written

4T Glin
/2 a1l -qa 2., 5.2 2
dTalz o FFt ) T - gl el uy
a 1l a
+ (1 +a)(1+ i.mg) u +3T7 _qof (1+1log u)-F
3 a 2 "a e e 8 *

3
(6.,16)

The derivation of Eq. (6.16) is given in the Appendix B. The

-

constant of integration F is determined at the boundary conditions
at point 3 or b,
The Hugoniot relations for the shock provide the boundary

conditions at points 3 and 4 and are obtained by setting the

derivatives in Eqs. (6.15) and (6.16) equal to zero. They are

5 Ta
-— ~ - ) — e -
2M(1+o)u -1 +Lo1eor =0 (6.17)
a 3
2 2
§M§(1+a) ua+%Ta-uTe log, v, - F=0 . (6.18)

3

The elimination of T8 between Eqs. (6.17) and (6.,18) and of F
computed at point 4 gives the "jump" condition -satisfied by
the velocity at point 3

u

5 <l 2 2 2a a _
5(§-M§ + 1w, - uy) - 3= Mg(ua -uy) - Te3 log, = =0 .
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If ve put

2a ua
1 * T+« Te3 log, (q)

and

y235(ua-ul‘)[(%ng*l) -%Pé(ug"ul&)] ’

then from Fig. 10 it ig clear that the equation Yy = Yo equivalent
to Eq. (6.19), has only one root u, other than u =u,. For each
point of the integral curve 2.4, we compute the corresponding point
3 from the jump condition (6.19) to get the locus of point 3. The
intersection of this locus and of the integral curve 1-3 leaving
point 1 determines the actual point 3. The solution is unique.

The structure equations (6.15) and {6,16) are integrated in
the same way as the thermal layer equations. The characteristic
equation at the singular points m = 3,4 obtained by setting

u, =uo ¢ Aekx, etc,, is here

2 /2 T + aT
T k (1 = a) T m
de(2 = 0)° G - ——- (a2 1(1 + o) - ~ 2) + 2 c]
&m n nm
(BTh + uTe )
«BH(1+a) 128 = 22 v1) - — 320, (6.20)
n

vhere Fa is the value of the function F‘ at point m, Point 3
m
turns out to be a node sud point 4 a saddle point., The atom
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velocity and temperature distributions are obtained by integrating
the direction field equetion dTa/dua = g(ua, Ta) fror point 4 to
point 3.

The ion velocity and temperature distributions may not be
given by the expansions (5.31) when the shock thickness is smaller
than 18a2. Hovever, retaining the assumption of small ion slip

we substitute u, and T& for u, and Ti in the right hand side of

Eqs. (6.13) and (6.14). This iterative method yields the follow-

ing first order approximations for u; and Ti:
221& ui du Ta + Te
2 a ,5 M2 3
u, = a - { (= M (1 + a) = )
ia' " a a
ar ‘1a2 /2 ay
+ 1 -c (2 2] (6.21)
u dx [ dx ' F, dx °=
a aa2 i
M':'Lt!. ui
= 2 2 3
Ty =T "3 Mg(l +a)ulu -u) - N 75 (5 o
L Qia(z'ra)
T du lia Tl/2 du Tl/2 4T
+a_8 2 (¢ a ( 8)2 +d d ( a a)]
u dx [} F dx dx ' F, dx *
a 332 i i
(6.22)

It is found that the ion viscosity and thermal conduction appreciably

reduce the ion slip and must be taken into account for a > 0.1,
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As in the weakly ionized case, the electric field, charge
separation and potential are given respectively by Egs. (5.26),
(5.27), and (5.28).

Results for two different degrees of ionization a = 0.1
and a = 0.5 at a free stream Mach number Ml = 2 are presented
in Figs. 11 and 12 respectively. In contrast to the weakly
ionized case, the atom shock retains some features of the icn
shock in the fully ionized casel.

In the thermal layer the electrons are heated up by the
decrease in the kinetic energy of the flcw, faster than the heavy
particles, because of their higher thermal conductivity. When
the degree of ionization becomes higher, the thermal energy of
tha electrons represents a larger fraction of the total energy
and the velocity drop and the heating of atoms and iopns increase,

The heating and the compression of the heavy particles occur,
mainly in the shock layer where it can be seen that the atom and
the ion temperatures overshcot their downstream values, Because
of their much smaller mass the electrons do not have time in a
fow mean free paths to exchange energy with the heavy psrticles
and the electron temperature is approximately constant through
the shock.

The dissipative mechanisms in the shock are the viscesity
and the thermal conduction of the ions and atoms. The ion slip

is everywhere small for a = 0.1; it is considerably larger for
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a = 0.5. Moreover it may be seen on Fig. 12 that the ion tem-
perature and velocity distributions obtained from Egqs. (6.21)
and (6.22) are locally in- error at both ends of the shock where
they overshoot their boundary values. In fact, for a = 0.5 the
solutions ua(x) and Ta(x) obtained from Egqs. (6.15) and (6.16)
do not represent the true atom velocity and temperature
distributions but rather the average distributions for the whole
plasma. This approximation may be responsible for the erroneous
behavior of the ion velccity and temperature distributions at
both ends of the shock, Unfortunately no acceptable numerical
solution which permits a simultaneous calculation of the ion and
atom velocity and temperature distributions has as yet been found,
The electric field varies slowly in the thermal layer and
there is a single oscillation of negative amplitude in the shock.
The potential reaches its maximum value at downstream infinity.
The shock structure for a strong shock (M1 = 10, at a = 0.1
is shown in Fig. 13, As in the weakly ionised case the electron
temperature rises sharply at first and the electric field has a
very sharp negative oscillation with a slower damping in the

precursor electric shock layer at the beginning of the thermal

layer. The ion slip is more important than at M, = 2 for the same

1

degree of ionization and for the same reeson as in the weakly
ionized case the ion velocity and temperature distributions

obtained from Eqs. (6.21) and (6.22) are in error near point 3,

(The erroneous parts are drawn in dotted lines on Figs., 12 and 13.)

R
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The variation of the shock thickness 8 and of the mayximum
electric field and potentisl with the degree of ionization a is
given in Table II for M1 = 2 and M, = 10. When o incresses, the
total number of atoms and iones being constant, the maximum electric
field measured in V/cm increases, but since the shock thickness
{measured in cm) decreases the potential rise acircss the shock
stays constant for all degrees of ionization. The shock thickness
is a minimum and the electric field is a maximum when the plasma
is fully ionized. The shock thickness is smaller than the down-
stream atom~-atom mean free path laa for a > 0,2 but is always

2

much larger than the downstream ion-ion mean free path Rii
2

except wien a = 1, The shock thickness decreases with the Mach
number while the electric field and potential increase,

VII., CONCLUDING REMARKS AND COMPARISON WITH EXPERIMENT

The model that we have proposed covers in principle all plasma
regimes fron weakly to fully ionized. But unfortunately, the
difficulty of numerically integrating more than two simultaneous
differential equations between singular points requires that the
solution be limited to an ionization less than about 30% so that,
the ion slip s ‘s small throughout the shock.

Some feacures of the shock structure are common to all plasmas

regimes such as the broad region of elevated electron temperature

ahead of the shock front and the induced electric field which travels

with the shock front., The potential rise across the shock is in=-

dependent of the degree of ionization,

T W ‘Y""‘“"‘" B R +
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When the degree of ionization a varies from very low values
to one, the shock strength decreases, and a partial compression
and heating of the heavy particles occurs ahead of the shock
front., The atom and ion temperatures overshoot their downstream
values., The shock thickness, which is of the order of the down-
stream atom-atom mean free path when a << 1 and of the order of
the downstream ion-ion meesn free path when a = 0{1), decreases
continuously when a goes from zero to one.

The potential rise across the imbedded shock in a magnetic
annular shock tube was measured by Heyvood18 in partially ionized
hydrogen at a free stream temperature of 300°K, a molecular

density of 8.75 - 10°° em™3

and a shock speed of 12.5 cm/us.

An electric probe, consisting of two steel electrodes separated

by a distance of 0.6 cm and insulated from each other, was placed
perallel to the axis of the shock tube, half way between the in-
ternal and external diameters., The electrodes were comnected to

the poles of an oscilloscope which measured the axial potential
differerce between them (voltage). The voltage distribution with
time is shown on Fig, 1l, As the travelling shock reaches the first
electrode, ihe voltage, initially zero, increases to a sharp peak of
36V and decreases to zero again. The voltage variation occurs over
a travel time corresponding to a distance of 1 cm, (The voltage in-

crease cn the right is due to the driving currents of magnetic

origin and is irrelevant here,) This result shows that the shock

18. J. B. Heywood, Ph,D. Thesis, Department of Mechanical Engineer-
ing, M.I.T., Cambridge, September 1964, To be published.

o o ———— ———
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thickness is at most equal to 1 cm al :hough not smaller than the
distance between the electrodes; were it otherwise, the voltage
curve vould have a flat maximum., Therefore in this case, the
shock thickness is of the order of 0.6 cm, the distance between
the electrodes, It may be possible in future experiments to
evaluate the shock thickness more accurately by varying the
distance between the electrodes. The maximum voltage occurs when
the shock is exactly between the electrodes and represents the
potential rise across the imbedded shock. For the conditioas of
the experiment, assuming that the dissociation is complete and

5% of the liydrogen is ionized, which corresponds to a free stream
Mach number of 60, the theory predicts a shock thickness of 0.25 cm
and a potential rise across the imbedded shock of 35V, The agree-
ment with the messured potential rise of 36V is excellent, the
agreement with the approximate measurement of the shock thickness
is also good. These results suggest that the measurement of the
potential rise may actually be a relatively simple method for the
detarmination of shock thickness and the shock front location in

shock tube experiments,
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APPENDIX A

ATOM~-ION ENERGY TRANSFER

Following Byron and Petschek16 the jon-atom energy transfer

per unit volume due to the random motion of th2 particles is

=]

i"-p > >
5~ nin} J (g - &) olg) g f f; dejde, (A1)

AE =
vhere E is the rslutive velocity in the mass center system,
¢ the center of mass velocity, o(g) the cross section for ion-
atom collisions, fa and fi are arbitrary normalized distribution
functions and gi and Za the random particle velocities, The atom
mass is taken equal to the ion mass m, .
We choose Za and E as variatles of integration. According to

the equations

-+ -+

ci =g + ca ’ (A.2)

-+ -+

de, = dg (A.3)
-+ +

-+ -» -+ ca + ci -+ -+ Bf.

g . G = g . (—-.é.-- = Ca . g + 2 0 (A.h)

Eq. (A.1l) becomes

m

n
_j;',-r.-» -+ & i"3 -+ _+
AE = 5=nin! ! c, * 8 a(g) & f f, dg dc, +g=nin | g o(g) f f, dg dc

(A.5)




Substituting intc Eq. (A.5) the Maxwell distributions

m
i )3/2

Zar) e (- mc/2kT!) (A.6)

fa(éa), = (

n m
> i \3/2 i 2. 2 > o
£ = () o L gr (e + 67+ 28, - D], (D)

lcg + 8) = (5 k]
we obtain
2 2
it (k)3 {f (g) -y [2 .3 fita
AE = == n!n' olg) g exp ——-T-JC + g exp [~ ==— (=
2 ia ok '/.’f;rfz QRTi a 2k T
m, p2
1 -+ . > 1 o
+ T;)- mica o g/kT!] dca dg + -2-J g o(g) exp (- QkT')
f [ Zia (3 + 22) ¢ . g/kT!] de_ dg) (A.8)
| exp >k '-I:'_- :I,-; - mica e g i ca & .

Integrating Eq. (A.8) with respect to the atom velocity and
transforming the integration over the velocity E into an integration

over the speed g we obtain

my 2, " (s i
AE = 2nm, n'n! [an(T’ ) ] {- 51-7—52 J g~ olg) exp [- EETEIf:#E;y] dg
0

1] 5 ne
+= | g olg) exp [- ] dg}
2 ! ERQTE + Ta$

m
i )5/2 (T,

' 5
/'(2k 372 0 ai T'+T’ "Ta)

m,k
i
g’ olg) exp [~ 2Ty 7 T'T] dg .
a

ON——— 8

(A.9)
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Assuming that the cross section o(g) is independent of g as in the
hard sphere model the integral term is easily computed and

the result is

I

AE = 37§§'[§;-(T1 + T;)]l/e Qj, njn! K(T} - T!) , (A.10)

where we have set o(g) = Qia'
The total energy transfer is the sum of the energy transfers
due to the random and directed motiomns of the particles and is

written

' = 2y1/2 ' ' 1y 11/2 T
ai ¥ UpPai = - 2(1) n;pi it Ta)] Qia[k(Ta Ti)

kK /m
[;; (T

+ — mi(u; + ui)] . (A.11)

APPENDIX B

ION-ATOM ENERGY EQUATION

On adding the ion energy equation (2.6, J = {) to the atom

energy equation (2.6, § = a), we obtain the following equation

Ca d“;? Cy d“ia 5 d
— —— A ! ! 14, ty o '
mo o T 5 ot t 5 o (Raug KTy + njui kTj) - C; eE}
du' du! aT! dT!
Wyt =) oS =y (0 =8y L (o,
ax' ‘YaMa ax'/ T ax’ ‘Y @' dx! ‘"a ax’ dx' ‘"1 ax'
= U !
gae + uapae + €ie + uipie * (3.1)
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Inside the shock of thickness % or zii , the momentum and
2 2
cnergy transfer between the electrons and the heavy particles is
negligitle and the right hand side of Eq. (B.l) vanishes. Further-

more, inside the shock T! is constant and Eq. (2.10) yields

C; kTé du{
’ = onn——
Ci eEx 'T dx. . (Boe)

On substituting C.eE} by its value from Eq. (B.2) in Eq.
(3.1) and integrating with respect to x' when Té is constant,

we obtain the following equation

dT; du! dT! du;

(¢}

— ! ".._a. i n__i_= _& ,2
Ka o' "t aa O "5 P P LM T ™M T Yy
+ fé-u'e + é-k(C T 4+ C,T!) c kT'llo u! - F? (B.3)
Mo Uy T HGta T bty ¢ by X 108 Yy ’ .
wnich in dimensionless form may be written
/2 /2
' . Ti T du . Ti ‘iaz ar du
B F Wt 70 * 03T 72 (@ 3=+ oy 57
s a s i's s

aoT

SARRICES SRS IURE — EVES S TR NS
(B.4)

In the shock we set A8 = laaz’ X, =X, u = ;
and Eq. (B.l4) becomes
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1-aq ali"z /2 du, /2 T, 5 2 2
( F; + Fi ) )(cua a dx +d a dx ) = Y 2(1 +a) ua
+ 2- -aT log u - F
2 'a e e a ¢

-

Multiplying Eq. (6.15) by u, and subtracting from the ahove

equation, we obtain Eq. (6.16),

(B.S)

TSN, v

v
NnT 11 £FAaTraran

B te)
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Locus of .
Point 3

. |
A N\

rig. 3. Integral curves in z - T; plane for weakly ionized

plasma (arrows indicate direction of increasing x*).
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Fig. 9. Integral curves in Te - uy phase space for moderate

2 ., 2a
and strong shocks (M2 <1 - m).
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s electric field and potential distributions

through a moderate strength shock (Ml = 2) at a = 0,5,

Velocity, temperature

Fig, 12,
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Velocity, temperature, electric field and potential distributions

through a strong shock (Ml

Fig. 13.
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Fig. 1lb,
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Voltage distribution as & function of time for a shock
SP;“E_@? of 12.5 cm/us, & free sirsan temperature of 300%
and & molecular density of 8,75 - 16%% a3 in partially

jonized hydrogen.
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Detail of the regiom shown by the arrow in Fig, 1ka

corresponding to the potential rise across the imbedded shock.




